Genetics of germination-arrest factor (GAF) production by Pseudomonas fluorescens WH6: identification of a gene cluster essential for GAF biosynthesis.

نویسندگان

  • Anne Halgren
  • Maciej Maselko
  • Mark Azevedo
  • Dallice Mills
  • Donald Armstrong
  • Gary Banowetz
چکیده

The genetic basis of the biosynthesis of the germination-arrest factor (GAF) produced by Pseudomonas fluorescens WH6, and previously identified as 4-formylaminooxyvinylglycine, has been investigated here. In addition to inhibiting the germination of a wide range of grassy weeds, GAF exhibits a selective antimicrobial activity against the bacterial plant pathogen Erwinia amylovora. We utilized the in vitro response of E. amylovora to GAF as a rapid screen for loss-of-function GAF phenotypes generated by transposon mutagenesis. A Tn5 mutant library consisting of 6364 WH6 transformants was screened in this Erwinia assay, resulting in the identification of 18 non-redundant transposon insertion sites that led to loss of GAF production in WH6, as confirmed by TLC analysis. These insertions mapped to five different genes and four intergenic regions. Three of these genes, including two putative regulatory genes (gntR and iopB homologues), were clustered in a 13 kb chromosomal region containing 13 putative ORFs. A GAF mutation identified previously as affecting an aminotransferase also maps to this region. We suggest that three of the genes in this region (a carbamoyltransferase, an aminotransferase and a formyltransferase) encode the enzymes necessary to synthesize dihydroGAF, the putative immediate precursor of GAF in a proposed GAF biosynthetic pathway. RT-qPCR analyses demonstrated that mutations in the gntR and iopB regulatory genes, as well as in a prtR homologue identified earlier as controlling GAF formation, suppressed transcription of at least two of the putative GAF biosynthetic genes (encoding the aminotransferase and formyltransferase) located in this 13 kb region.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Negative regulation of germination-arrest factor production in Pseudomonas fluorescens WH6 by a putative extracytoplasmic function sigma factor.

Pseudomonas fluorescens WH6 secretes a germination-arrest factor (GAF) that we have identified previously as 4-formylaminooxyvinylglycine. GAF irreversibly inhibits germination of the seeds of numerous grassy weeds and selectively inhibits growth of the bacterial plant pathogen Erwinia amylovora. WH6-3, a mutant that has lost the ability to produce GAF, contains a Tn5 insertion in prtR, a gene ...

متن کامل

Germination arrest factor (GAF): Part 2. Physical and chemical properties of a novel, naturally occurring herbicide produced by Pseudomonas fluorescens strain WH6

Pseudomonas fluorescens isolate WH6 and several related isolates have been shown previously to produce and secrete a novel, naturally occurring herbicide that arrests germination of the seeds of a large number of grassy weed species. The physical and chemical characteristics of this Germination Arrest Factor (GAF) have been investigated in the present study. GAF was insoluble in all organic sol...

متن کامل

Functional analysis of a biosynthetic cluster essential for production of 4-formylaminooxyvinylglycine, a germination-arrest factor from Pseudomonas fluorescens WH6.

Rhizosphere-associated Pseudomonas fluorescens WH6 produces the germination-arrest factor 4-formylaminooxyvinylglycine (FVG). FVG has previously been shown to both arrest the germination of weedy grasses and inhibit the growth of the bacterial plant pathogen Erwinia amylovora. Very little is known about the mechanism by which FVG is produced. Although a previous study identified a region of the...

متن کامل

The Pseudomonas aeruginosa antimetabolite L-2-amino-4-methoxy-trans-3-butenoic acid inhibits growth of Erwinia amylovora and acts as a seed germination-arrest factor.

The Pseudomonas aeruginosa antimetabolite L-2-amino-4-methoxy-trans-3-butenoic acid (AMB) shares biological activities with 4-formylaminooxyvinylglycine, a related molecule produced by Pseudomonas fluorescens WH6. We found that culture filtrates of a P. aeruginosa strain overproducing AMB weakly interfered with seed germination of the grassy weed Poa annua and strongly inhibited growth of Erwin...

متن کامل

The in Silico Characterization of a Salicylic Acid Analogue Coding Gene Clusters in Selected Pseudomonas Fluorescens Strains

Background: The microbial genome sequences provide solid in silico framework for interpretation their drug-like chemical scaffolds biosynthetic potential. The Pseudomonas fluorescens species is metabolically versatile and producing therapeutically important natural products.Objectives: The main objective of the present study was to mine the publically available data of P. fluorescens stra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Microbiology

دوره 159 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2013